Nanotechnologie

Jako nanotechnologie se obecně označuje technický obor, který se zabývá tvorbou a využíváním technologií v měřítku řádově nanometrů (obvykle cca 1–100 nm), tzn. 10−9 m (miliardtiny metru), což je přibližně tisícina tloušťky lidského vlasu. Jedná se rovněž o studium možnosti manipulace se hmotou v atomárním a molekulárním měřítku, přičemž se uplatňují kvantově-mechanické jevy, které se diametrálně vymykají chápání světa viditelného pouhým okem. Díky těmto jevům, které popisuje kvantová fyzika, se otevírají nové perspektivy v oblasti magnetických záznamových mediích, výpočetní technice, elektronice, optice a dalších vědních oblastech.

Nanostruktury, tzn. oblast částic a struktur o rozměrech mezi 1 nm až 100 nm, považujeme za základní stavební jednotky nanomateriálů. Zkoumáním jejich vlastností se pak zabývá nanověda. Její hranice se však nedá zcela přesně vymezit. Zahrnuje oblasti fyziky pevných látek, chemie, inženýrství i molekulární biologie. Nanotechnologie bychom potom mohli definovat jako interdisciplinární a průřezové technologie, zabývající se praktickým využitím nových a neobvyklých vlastností nanomateriálů pro konstrukci nových struktur, materiálů a zařízení.

Jako jeden ze zakladatelů nanotechnologie (třebaže ještě nepoužil toho slova) je označován Richard Feynman, který základní myšlenky představil ve své slavné přednášce nazvané Tam dole je spousta místa (There’s Plenty of Room at the Bottom), kterou v roce 1959 přednesl na výroční schůzi Americké společnosti fyziků pořádané na Caltechu.

Využití nanotechnologií a nanomateriálů je velmi rozsáhlé. Již v současnosti nalézají uplatnění v mnoha oblastech běžného života jako je elektronika (paměťová média, spintronika, bioelektronika, kvantová elektronika), zdravotnictví (cílená doprava léčiv), strojírenství (supertvrdé povrchy s nízkým třením, samočisticí nepoškrabatelné laky), chemický průmysl (nanotrubice, nanokompozity, selektivní katalýza, aerogely), elektrotechnický průmysl (vysokokapacitní záznamová média, fotomateriály, palivové články), optický průmysl (optické filtry, fotonické krystaly a fotonická vlákna, integrovaná optika), automobilový průmysl, kosmický průmysl (katalyzátory, odolné povrchy satelitů), vojenský průmysl (nanosenzory, konstrukční prvky raketoplánů), životní prostředí (biodegradace).

Příklady kvantových jevů

Mezi hojně využívané kvantové jevy se rovněž řadí tunelový jev, na jehož principu je založen řádkovací tunelový mikroskop.

Nanotechnologie v elektronice

V posledních letech je vyvíjeno enormní úsilí v oblasti základního výzkumu, zejména v oblasti nanoelektroniky. Za objev jevu obří magnetické rezistence (GMR) získali v roce 2007 Nobelovu cenu za fyziku Albert Fert a Peter Grünberg. Jedná se o ovlivňování elektrického odporu látky interakcí spinu elektronu s magnetizací materiálu v nanostrukturách. Tento objev nalezl praktické využití při konstrukci počítačových pamětí nové generace, senzorů nové generace při nádorových onemocněních mozku, proudových senzorů nebo tenzometrů. V tuzemsku koncept molekulové elektroniky na bázi uhlíkatých nanotechnologií už v r. 1988 navrhl – a od té doby dál v zámoří rozvíjí – odborník na fullereny Zdeněk Slanina.

Související články

Zdroj:

Wikipedie - Heslo: "Nanotechnologie". https://cs.wikipedia.org/wiki/Nanotechnologie Stránka byla naposledy editována 25. 6. 2019 v 12:56. Kopie na oneindustry dne: 8.7. 2019. Námi provedené změny jsou v textu označeny tmavě modře (v tomto textu konkrétně nic není).